ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник. ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.)
Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |