ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат купюры достоинством 1, 2, .. , 2n тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 111763  (#07.4.11.2)

Темы:   [ Вычисление производной ]
[ Неравенства с модулями ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4
Классы: 10,11

Квадратные трёхчлены f(x) и g(x) таковы, что  f '(x)g'(x) ≥ |f(x)| + |g(x)|  при всех действительных x.
Докажите, что произведение f(x)g(x) равно квадрату некоторого трёхчлена.

Прислать комментарий     Решение

Задача 111764  (#07.4.11.3)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC на стороне BC выбрана точка M так, что точка пересечения медиан треугольника ABM лежит на описанной окружности треугольника ACM , а точка пересечения медиан треугольника ACM лежит на описанной окружности треугольника ABM . Докажите, что медианы треугольников ABM и ACM из вершины M равны.
Прислать комментарий     Решение


Задача 111765  (#07.4.11.4)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Индукция (прочее) ]
Сложность: 5+
Классы: 9,10,11

На столе лежат купюры достоинством 1, 2, .. , 2n тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?
Прислать комментарий     Решение


Задача 111766  (#07.4.11.5)

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

При каких натуральных n найдутся такие целые a, b, c, что их сумма равна нулю, а число  an + bn + cn  – простое?

Прислать комментарий     Решение

Задача 111767  (#07.4.11.6)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Раскраски ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10,11

На плоскости отмечено несколько точек, каждая покрашена в синий, желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки, нет точек этого же цвета, но есть хотя бы одна другого цвета. Каково максимально возможное число всех точек?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .