ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Назовём натуральное число $n$ интересным, если $n$ и $n+2023$ – палиндромы, то есть числа, одинаково читающееся слева направо и справа налево. Найдите наименьшее и наибольшее интересные числа. ![]() ![]() В ряду из 2009 гирек вес каждой гирьки составляет целое число граммов и не превышает 1 кг. Веса каждых двух соседних гирек отличаются ровно на 1 г, а общий вес всех гирь в граммах является чётным числом. Докажите, что гирьки можно разделить на две кучки, суммы весов в которых равны. ![]() ![]() ![]() На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле? ![]() ![]() ![]() Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа? ![]() ![]() ![]() Саша написал на доске несколько двузначных чисел в порядке возрастания, а после этого заменил одинаковые цифры на одинаковые буквы, а разные цифры – на разные буквы. У него получилось (в том же порядке) АС, АР, ЯР, ЯК, ОК, ОМ, УМ, УЖ, ИЖ, ИА Восстановите цифры.![]() ![]() ![]() Ненулевые числа a, b, c таковы, что ax² + bx + c > cx при любом x. Докажите, что cx² – bx + a > cx – b при любом x. ![]() ![]() |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Найдите количество удачных натуральных чисел, меньших 2010.
Ненулевые числа a, b, c таковы, что ax² + bx + c > cx при любом x. Докажите, что cx² – bx + a > cx – b при любом x.
Прямые, касающиеся окружности ω в точках B и D, пересекаются в точке P. Прямая, проходящая через P, высекает на окружности хорду AC. Через точку отрезка AC проведена прямая, параллельная BD. Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.
Страница: << 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |