ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости отмечены все точки с целыми координатами  (x,y) такие, что x2+y2 1010 . Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115396  (#06.4.11.1)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Обход графов ]
[ Подсчет двумя способами ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10,11

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.

Прислать комментарий     Решение

Задача 115397  (#06.4.11.2)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.
Прислать комментарий     Решение


Задача 115398  (#06.4.11.3)

Темы:   [ Сфера, описанная около тетраэдра ]
[ Теорема о трех перпендикулярах ]
[ Ортоцентр и ортотреугольник ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5+
Классы: 10,11

В треугольной пирамиде  ABCD все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках  ABC , ABD , ACD лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер  AB , AC , AD .
Прислать комментарий     Решение


Задача 115399  (#06.4.11.4)

Темы:   [ Поворот на $90^\circ$ ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Метод координат на плоскости ]
[ Теория игр (прочее) ]
Сложность: 6-
Классы: 9,10,11

На плоскости отмечены все точки с целыми координатами  (x,y) такие, что x2+y2 1010 . Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?
Прислать комментарий     Решение


Задача 115400  (#06.4.11.5)

Темы:   [ Логарифмические неравенства ]
[ Неравенства. Метод интервалов ]
Сложность: 4-
Классы: 11

Пусть 1<a b c . Докажите, что

log a b+log b c+log c alog b a+log c b+log a c.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .