ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
III Олимпиада по геометрии имени И.Ф. Шарыгина (2007 г.)
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего n-угольника с его вершинами, делят n-угольник на n равных треугольников.
Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
Три окружности проходят через точку P, а вторые точки их пересечения A, B, C лежат на одной прямой. A1, B1, C1 – вторые точки пересечения прямых AP, BP, CP
с соответствующими окружностями. C2 – точка пересечения
прямых AB1 и BA1. A2, B2 определяются аналогично.
Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы.
Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|