ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на a метров у себя и на b метров у соперника", где a, b – действительные числа,  0 < a < b.  Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе
  а) конечно;  б) бесконечно?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116047  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 10,11

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).

  а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным?

  б) Пусть стёрлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k всегда можно однозначно восстановить стёршиеся записи?

Прислать комментарий     Решение

Задача 116048  (#2)

Темы:   [ Задачи на движение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 8,9,10,11

На кольцевом треке 2n велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее n² встреч.

Прислать комментарий     Решение

Задача 116049  (#3)

Темы:   [ Неравенство треугольника (прочее) ]
[ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 8,9,10,11

Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2.

Прислать комментарий     Решение

Задача 116050  (#4)

Темы:   [ Теория игр (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на a метров у себя и на b метров у соперника", где a, b – действительные числа,  0 < a < b.  Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе
  а) конечно;  б) бесконечно?

Прислать комментарий     Решение

Задача 116051  (#5)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Радикальная ось ]
[ Подобие ]
Сложность: 4
Классы: 10,11

Автор: Ивлев Б.М.

Четырёхугольник ABCD вписан в окружность с центром O, причём точка O не лежит ни на одной из диагоналей этого четырёхугольника. Известно, что центр описанной окружности треугольника AOC лежит на прямой BD. Докажите, что центр описанной окружности треугольника BOD лежит на прямой AC.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .