ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Бабе-Яге подарили большие песочные часы на 5 минут и маленькие – на 2 минуты. Зелье должно непрерывно кипеть ровно 8 минут. Когда оно закипело, весь песок в больших часах находился в нижней половине, а в маленьких – какая-то (неизвестная) часть песка в верхней, а остальная часть – в нижней половине. Помогите Бабе-Яге отмерить ровно 8 минут.
(Песок все время сыплется с постоянной скоростью. На переворачивание время не тратится.)

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 363]      



Задача 107702

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Куб ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9,10,11

Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?
Прислать комментарий     Решение


Задача 111641

Темы:   [ Неравенства с площадями ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Египтяне вычисляли площадь выпуклого четырёхугольника по формуле (a+c)(b+d)/4 , где a , b , c , d  — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна.
Прислать комментарий     Решение


Задача 115389

Темы:   [ Неравенства с объемами ]
[ Объем тела равен сумме объемов его частей ]
[ Касающиеся сферы ]
[ Шар и его части ]
[ Объем шара, сегмента и проч. ]
[ Взвешивания ]
Сложность: 3+
Классы: 10,11

На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)
Прислать комментарий     Решение


Задача 115711

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Геометрия на клетчатой бумаге ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду.
Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для каждого из них.
Прислать комментарий     Решение


Задача 116369

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9,10,11

Бабе-Яге подарили большие песочные часы на 5 минут и маленькие – на 2 минуты. Зелье должно непрерывно кипеть ровно 8 минут. Когда оно закипело, весь песок в больших часах находился в нижней половине, а в маленьких – какая-то (неизвестная) часть песка в верхней, а остальная часть – в нижней половине. Помогите Бабе-Яге отмерить ровно 8 минут.
(Песок все время сыплется с постоянной скоростью. На переворачивание время не тратится.)

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .