ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 363]      



Задача 107624

Темы:   [ Геометрия на клетчатой бумаге ]
[ Перенос помогает решить задачу ]
Сложность: 4-
Классы: 7,8,9

Найдите сумму величин углов MAN, MBN, MCN, MDN и MEN, нарисованных на клетчатой бумаге так, как показано на рисунке 1.
Рис. 1

Прислать комментарий     Решение


Задача 107632

Темы:   [ Разные задачи на разрезания ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9,10

Можно ли разрезать равносторонний треугольник на пять попарно различных равнобедренных треугольников.
Прислать комментарий     Решение


Задача 115393

Темы:   [ Выигрышные и проигрышные позиции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто-то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим.
Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) У каждого по две горошины;
б) У каждого по три горошины;
в) У каждого по десять горошин;
г) Общий случай: у каждого по N горошин.
Прислать комментарий     Решение


Задача 115394

Темы:   [ Теория игр (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10,11

Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры.
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) Начальная клетка — угловая, поле любого размера;
б) Поле и начальная клетка как на рисунке к этому заданию;
в) Общий случай: поле любого размера, и начальная клетка в нём произвольная.
г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.


Прислать комментарий     Решение

Задача 115710

Темы:   [ Равносоставленные фигуры ]
[ Теорема Пифагора (прямая и обратная) ]
[ Шестиугольники ]
Сложность: 4-
Классы: 7,8,9

Покажите, как разрезать фигуру, изображенную на верхнем рисунке, на три равные части и сложить из этих частей правильный шестиугольник, изображенный на нижнем рисунке. Оставлять дырки и накладывать части друг на друга нельзя.




Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .