ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 116240

Темы:   [ Вписанный угол равен половине центрального ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
  1) у каждого квадрата одна вершина лежит на границе круга;
  2) квадраты не пересекаются;
  3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.

Прислать комментарий     Решение

Задача 116241

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

Семизначный код, состоящий из семи различных цифр, назовем хорошим. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?

Прислать комментарий     Решение

Задача 116246

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь многоугольника ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 10,11

На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади S. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь S.

Прислать комментарий     Решение

Задача 116409

Темы:   [ Четность и нечетность ]
[ Теория графов (прочее) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.

Прислать комментарий     Решение

Задача 116410

Темы:   [ Процессы и операции ]
[ Формулы сокращенного умножения (прочее) ]
[ Задачи на максимум и минимум ]
Сложность: 3+
Классы: 8,9

На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .