ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду. Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов. Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:
В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит. ![]() ![]() Докажите, что центры всех правильных треугольников, вписанных в данную конику, лежат на некоторой конике. ![]() ![]() ![]() Профессии членов семьи. В семье Семеновых 5 человек: муж, жена, их сын, сестра мужа и отец жены. Все они работают. Один — инженер, другой — юрист, третий — слесарь, четвертый — экономист, пятый — учитель. Вот что еще известно о них. Юрист и учитель не кровные родственники. Слесарь — хороший спортсмен. Он пошел по стопам экономиста и играет в футбол за сборную завода. Инженер старше жены своего брата, но моложе, чем учитель. Экономист старше, чем слесарь. Назовите профессии каждого члена семьи Семеновых. ![]() ![]() ![]() В равнобедренном треугольнике ABC (AB = BC) биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC. ![]() ![]() ![]() В каждую клетку квадратной таблицы размера (2n – 1)×(2n – 1) ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок. ![]() ![]() ![]() Планета "Тетраинкогнито", покрытая "океаном", имеет форму правильного тетраэдра с ребром 900 км. ![]() ![]() ![]() Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000? ![]() ![]() |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Какое наибольшее значение может принимать выражение
Страница: << 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |