ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дана незамкнутая несамопересекающаяся ломаная, в которой 31 звено (соседние звенья не лежат на одной прямой). Через каждое звено провели прямую, содержащую это звено. Получили 31 прямую, некоторые, возможно, совпали. Какое наименьшее число различных прямых могло получиться? Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)
Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить 12345 + 6 + 789 = 13140). С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.
На плоскости дана незамкнутая несамопересекающаяся ломаная, в которой 31 звено (соседние звенья не лежат на одной прямой). Через каждое звено провели прямую, содержащую это звено. Получили 31 прямую, некоторые, возможно, совпали. Какое наименьшее число различных прямых могло получиться?
Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|