ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116674  (#3)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 7,8,9

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Прислать комментарий     Решение

Задача 116675  (#3)

Темы:   [ Параллелограммы (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 7,8,9

В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

Прислать комментарий     Решение

Задача 116692  (#3)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Подобные треугольники (прочее) ]
[ Гомотетичные многоугольники ]
Сложность: 4-
Классы: 10

Из плоскости вырезали равносторонний треугольник.
Можно ли оставшуюся часть плоскости замостить треугольниками, любые два из которых подобны, но не гомотетичны?

Прислать комментарий     Решение

Задача 116698  (#3)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для элементов треугольника (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 11

В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Докажите, что если  ∠A ≤ ∠B ≤ ∠C,  то  AH + BH ≥ 2R.

Прислать комментарий     Решение

Задача 116704  (#3)

Темы:   [ Двоичная система счисления ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 11

Учитель написал на доске в алфавитном порядке все возможные 2n слов, состоящих из n букв А или Б. Затем он заменил каждое слово на произведение n множителей, исправив каждую букву А на x, а каждую букву Б – на  (1 – x),  и сложил между собой несколько первых из этих многочленов от x. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке  [0, 1]  функцию от x.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .