ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй. ![]() ![]() На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK. ![]() ![]() ![]() Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.) ![]() ![]() |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Даны натуральные числа M и N, большие десяти, состоящие из одинакового количества цифр и такие, что M = 3N. Чтобы получить число M, надо в числе N к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число N?
Даны натуральные числа M и N, большие десяти, состоящие из одинакового количества цифр и такие, что M = 3N. Чтобы получить число M, надо в числе N к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число N?
Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Окружность, вписанная в прямоугольный треугольник ABC с гипотенузой AB, касается его сторон BC, CA, AB в точках A1, B1, C1 соответственно. Пусть B1H – высота треугольника A1B1C1. Докажите, что точка H лежит на биссектрисе угла CAB.
Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)
Страница: 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |