Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
116942
(#10.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества A1, A2, A3, ... так, чтобы при любом натуральном k сумма
всех чисел, входящих в подмножество Ak, равнялась k + 2013?
Задача
116950
(#11.4)
|
|
Сложность: 4 Классы: 8,9,10
|
В окружность Ω вписан остроугольный треугольник ABC, в котором AB > BC. Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.
Задача
116935
(#9.5)
|
|
Сложность: 3 Классы: 8,9,10
|
Ненулевые числа a и b таковы, что уравнение a(x – a)² + b(x – b)² = 0 имеет единственное решение. Докажите, что |a| = |b|.
Задача
116936
(#10.5)
|
|
Сложность: 3 Классы: 8,9,10
|
30 девочек – 13 в красных платьях и 17 в синих платьях – водили хоровод вокруг новогодней ёлки. Впоследствии каждую из них спросили, была ли её соседка справа в синем платье. Оказалось, что правильно ответили те и только те девочки, которые стояли между девочками в платьях одного цвета. Сколько девочек могли ответить утвердительно?
Задача
116951
(#11.5)
|
|
Сложность: 3 Классы: 8,9,10
|
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]