ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все пары простых чисел p и q, обладающие следующим свойством:  7p + 1  делится на q, а  7q + 1  делится на p.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116979  (#2)

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 5,6,7

Найдите все пары простых чисел p и q, обладающие следующим свойством:  7p + 1  делится на q, а  7q + 1  делится на p.

Прислать комментарий     Решение

Задача 32898  (#2)

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?

Прислать комментарий     Решение

Задача 32892  (#2)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что  ∠ABM = ∠MBL.  Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что  AN = BL.

Прислать комментарий     Решение

Задача 32886  (#2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Треугольник ABC равнобедренный  (AB = BC).  Точка M – середина стороны AB, точка P – середина отрезка CM, точка N делит сторону BC в отношении  3 : 1  (считая от вершины B). Докажите, что  AP = MN.

Прислать комментарий     Решение

Задача 116254  (#2)

Темы:   [ Показательные уравнения ]
[ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите такое значение $a > 1$,  при котором уравнение  $a^x = \log_a x$  имеет единственное решение.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .