ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 32986

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Найдите самое маленькое k, при котором k! делится на 2040.

Прислать комментарий     Решение

Задача 32989

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что  1 + 277 + 377 + ... + 199677  делится на 1997.

Прислать комментарий     Решение

Задача 32991

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 8

Можно ли семь телефонов соединить проводами так, чтобы каждый телефон был соединён ровно с тремя?

Прислать комментарий     Решение

Задача 32992

Темы:   [ Планарные графы. Формула Эйлера ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Основные свойства и определения правильных многогранников ]
[ Проектирование помогает решить задачу ]
Сложность: 2+
Классы: 8

Можно ли расположить на плоскости
  а) 4 точки так, чтобы каждая из них была соединена отрезками с тремя другими (без пересечений)?
  б) 6 точек и соединить их непересекающимися отрезками так, чтобы из каждой точки выходило ровно 4 отрезка?

Прислать комментарий     Решение

Задача 32993

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 8

Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .