ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 810]      



Задача 35678

Темы:   [ Перебор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 6,7,8,9

Николай с сыном и Петр с сыном были на рыбалке. Николай поймал столько же рыб, сколько и его сын, а Петр – втрое больше, чем его сын. Всего было поймано 25 рыб. Как зовут сына Петра?

Прислать комментарий     Решение

Задача 35688

Темы:   [ Алгебра и арифметика (прочее) ]
[ Последовательности (прочее) ]
Сложность: 3-
Классы: 8,9

Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.
Прислать комментарий     Решение


Задача 35733

Темы:   [ Теория алгоритмов (прочее) ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Сломанный калькулятор выполняет только одну операцию "звездочка":  ab = 1 – a : b.
Докажите, что с помощью этого калькулятора все же возможно выполнить любое из четырёх арифметических действий.

Прислать комментарий     Решение

Задача 35791

Темы:   [ Комбинаторика (прочее) ]
[ Процессы и операции ]
[ Задачи с неравенствами. Разбор случаев ]
[ Принцип крайнего ]
Сложность: 3-
Классы: 8,9

У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?

Прислать комментарий     Решение

Задача 35792

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3-
Классы: 9,10,11

Даны многочлены P1, P2, ... , P5, имеющие суммы коэффициентов, равные 1, 2, 3, 4, 5 соответственно.
Найдите сумму коэффициентов многочлена  Q = P1P2...P5.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .