ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи 100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом? ![]() ![]() Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
![]() ![]() ![]() Окружность, касающаяся сторон AC и BC треугольника ABC в точках M и N, касается также его описанной окружности (внутренним образом). Докажите, что середина отрезка MN совпадает с центром вписанной окружности треугольника ABC. ![]() ![]() ![]() Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок? ![]() ![]() ![]() В пространстве расположили конечный набор кругов радиуса $1$. Круги могут пересекаться друг с другом, но не проходят через центры друг друга. В центре каждого круга зажгли точечную лампочку, светящую во все стороны. Могло ли случиться, что любой луч света, выходящий из центра любого круга, упирается в какой-то другой круг? ![]() ![]() ![]() На гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных "луночек" равна площади треугольника.
![]() ![]() |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1956]
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1956] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |