ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?

Вниз   Решение


Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

ВверхВниз   Решение


Окружность, касающаяся сторон AC и BC треугольника ABC в точках M и N, касается также его описанной окружности (внутренним образом). Докажите, что середина отрезка MN совпадает с центром вписанной окружности треугольника ABC.

ВверхВниз   Решение


Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок?

ВверхВниз   Решение


В пространстве расположили конечный набор кругов радиуса $1$. Круги могут пересекаться друг с другом, но не проходят через центры друг друга. В центре каждого круга зажгли точечную лампочку, светящую во все стороны. Могло ли случиться, что любой луч света, выходящий из центра любого круга, упирается в какой-то другой круг?

ВверхВниз   Решение


На гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных "луночек" равна площади треугольника.

Вверх   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1956]      



Задача 56694  (#03.037)

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 5
Классы: 8,9

Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.
Прислать комментарий     Решение


Задача 54505  (#03.038)

 [Луночки Гиппократа]
Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

На гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных "луночек" равна площади треугольника.

Прислать комментарий     Решение


Задача 56696  (#03.039)

Тема:   [ Площади криволинейных фигур ]
Сложность: 5
Классы: 9

В круге проведены два перпендикулярных диаметра, т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых служат эти радиусы. Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырех кругов (рис.).


Прислать комментарий     Решение

Задача 56697  (#03.040)

Тема:   [ Площади криволинейных фигур ]
Сложность: 5
Классы: 9

На трех отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.
Прислать комментарий     Решение


Задача 56698  (#03.041)

Тема:   [ Площади криволинейных фигур ]
Сложность: 5
Классы: 9

На сторонах произвольного остроугольного треугольника ABC как на диаметрах построены окружности. При этом образуется три к внешнихк криволинейных треугольника и один к внутреннийк (рис.). Докажите, что если из суммы площадей к внешнихк треугольников вычесть площадь к внутреннегок треугольника, то получится удвоенная площадь треугольника ABC.


Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .