ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 1956]      



Задача 56862  (#05.028)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

В треугольник ABC вписана окружность, касающаяся его сторон в точках  A1, B1, C1. Докажите, что если треугольники ABC и A1B1C1 подобны, то треугольник ABC правильный.
Прислать комментарий     Решение


Задача 56863  (#05.029)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8

Радиус вписанной окружности треугольника равен 1, длины высот — целые числа. Докажите, что треугольник правильный.
Прислать комментарий     Решение


Задача 53391  (#05.030)

Темы:   [ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

Прислать комментарий     Решение

Задача 56865  (#05.031)

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.
Прислать комментарий     Решение


Задача 56866  (#05.033B)

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.
Прислать комментарий     Решение


Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .