ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что последовательность  an = 1 + 17n²  (n ≥ 0)  содержит бесконечно много квадратов целых чисел.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 61478  (#11.051)

Темы:   [ Квадратные корни (прочее) ]
[ Линейные рекуррентные соотношения ]
Сложность: 5
Классы: 10,11

Докажите, что при всех натуральных n выполняется сравнение [(1 + $ \sqrt{2}$)n] $ \equiv$ n(mod 2).

Прислать комментарий     Решение

Задача 61479  (#11.052)

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Докажите, что последовательность  an = 1 + 17n²  (n ≥ 0)  содержит бесконечно много квадратов целых чисел.

Прислать комментарий     Решение

Задача 61480  (#11.053)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4+
Классы: 9,10,11

Определим последовательности {xn} и {yn} при помощи условий:

xn = xn - 1 + 2yn - 1sin2$\displaystyle \alpha$,    yn = yn - 1 + 2xn - 1cos2$\displaystyle \alpha$;    x0 = 0, y0 = cos$\displaystyle \alpha$.

Найдите выражение для xn и yn через n и $ \alpha$.

Прислать комментарий     Решение

Задача 61481  (#11.054)

Темы:   [ Текстовые задачи (прочее) ]
[ Итерации ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?

Прислать комментарий     Решение

Задача 61482  (#11.055)

Темы:   [ Линейные рекуррентные соотношения ]
[ Многочлены (прочее) ]
Сложность: 5
Классы: 10,11

Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если
  a) характеристическое уравнение имеет простые корни  x1,..., xk,  отличные от нуля;
  б) характеристическое уравнение имеет отличные от нуля корни  x1, ..., xm  с кратностями  α1, ..., αm  соответственно?
Определения, связанные с рекуррентными последовательностями, смотри в справочнике.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .