ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13.
Найдите 2013-й член последовательности.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 64545  (#10.1)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3

Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13.
Найдите 2013-й член последовательности.

Прислать комментарий     Решение

Задача 64546  (#10.2)

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3

Корни квадратного трёхчлена  f(x) = x² + bx + c  равны m1 и m2, а корни квадратного трёхчлена  g(x) = x² + px + q  равны k1 и k2.
Докажите, что  f(k1) + f(k2) + g(m1) + g(m2) ≥ 0.

Прислать комментарий     Решение

Задача 64547  (#10.3)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+

Точка F – середина стороны BC квадрата ABCD. К отрезку DF проведён перпендикуляр AE. Найдите угол CEF.

Прислать комментарий     Решение

Задача 64548  (#10.4)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Монотонность, ограниченность ]
Сложность: 3+

Найдите наибольшее значение выражения  a + b + c + d – ab – bc – cd – da,  если каждое из чисел a, b, c и d принадлежит отрезку  [0, 1].

Прислать комментарий     Решение

Задача 64549  (#10.5)

Темы:   [ Точка Торричелли ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Признаки подобия ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4-

На стороне AB треугольника ABC отмечена точка K, а на стороне AC – точка M. Отрезки BM и CK пересекаются в точке P. Оказалось, что углы APB, BPC и CPA равны по 120°, а площадь четырёхугольника AKPM равна площади треугольника BPC. Найдите угол BAC.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .