ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p ![]() ![]() Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте? ![]() ![]() ![]() Дан квадратный лист клетчатой бумаги размером 100×100 клеток. Проведено несколько несамопересекающихся ломаных, идущих по сторонам клеток и не имеющих общих точек. Эти ломаные идут строго внутри квадрата, а концами обязательно выходят на границу. Докажите, что кроме вершин квадрата найдется еще узел (внутри квадрата или на границе), не принадлежащий ни одной ломаной. ![]() ![]() ![]() Шесть равносторонних треугольников расположены, как на рисунке. ![]() ![]() ![]() Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции? ![]() ![]() ![]() Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 6]
Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13.
Корни квадратного трёхчлена f(x) = x² + bx + c равны m1 и m2, а корни квадратного трёхчлена g(x) = x² + px + q равны k1 и k2.
Точка F – середина стороны BC квадрата ABCD. К отрезку DF проведён перпендикуляр AE. Найдите угол CEF.
Найдите наибольшее значение выражения a + b + c + d – ab – bc – cd – da, если каждое из чисел a, b, c и d принадлежит отрезку [0, 1].
На стороне AB треугольника ABC отмечена точка K, а на стороне AC – точка M. Отрезки BM и CK пересекаются в точке P. Оказалось, что углы APB, BPC и CPA равны по 120°, а площадь четырёхугольника AKPM равна площади треугольника BPC. Найдите угол BAC.
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |