ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа x, y и z таковы, что все три числа  x + yz,  y + zx  и  z + xy  рациональны, а  x² + y² = 1.  Докажите, что число xyz² также рационально.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



Задача 64630  (#10.5)

Темы:   [ Теория игр (прочее) ]
[ Кубические многочлены ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

На доске написано уравнение  x³ + *x² + *x + * = 0.  Петя и Вася по очереди заменяют звёздочки на рациональные числа: вначале Петя заменяет любую из звёздочек, потом Вася – любую из двух оставшихся, а затем Петя – оставшуюся звёздочку. Верно ли, что при любых действиях Васи Петя сможет получить уравнение, у которого разность каких-то двух корней равна 2014?

Прислать комментарий     Решение

Задача 64638  (#11.5)

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 10,11

Числа x, y и z таковы, что все три числа  x + yz,  y + zx  и  z + xy  рациональны, а  x² + y² = 1.  Докажите, что число xyz² также рационально.

Прислать комментарий     Решение

Задача 64765  (#9.5)

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

К натуральному числу N прибавили наибольший его делитель, меньший N, и получили степень десятки. Найдите все такие N.

Прислать комментарий     Решение

Задача 64765  (#10.5)

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

К натуральному числу N прибавили наибольший его делитель, меньший N, и получили степень десятки. Найдите все такие N.

Прислать комментарий     Решение

Задача 64781  (#11.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

Натуральное число n назовём хорошим, если каждый его натуральный делитель, увеличенный на 1, является делителем числа  n + 1.
Найдите все хорошие натуральные числа.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .