ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке. ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
В прямоугольном треугольнике ABC (∠C = 90°) биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что OI ⊥ AB.
В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что AB = CD.
На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |