Страница: 1
2 >> [Всего задач: 8]
Задача
64812
(#10.1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.
Задача
64813
(#10.2)
|
|
Сложность: 4 Классы: 9,10,11
|
Даны окружность, её хорда AB и середина W меньшей дуги AB. На большей дуге AB выбирается произвольная точка C. Касательная к окружности, проведённая из точки C, пересекает касательные, проведённые из точек A и B, в точках X и Y соответственно. Прямые WX и WY пересекают прямую AB в точках N и M соответственно. Докажите, что длина отрезка NM не зависит от выбора точки C.
Задача
64863
(#10.3)
|
|
Сложность: 4- Классы: 10,11
|
Верно ли, что существуют выпуклые многогранники с любым количеством диагоналей? (Диагональю называется отрезок, соединяющий две вершины многогранника и не лежащий на его поверхности.)
Задача
64858
(#10.4)
|
|
Сложность: 5- Классы: 9,10,11
|
Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности.
Сколько может оказаться точек, хороших для данного треугольника ABC?
Задача
64859
(#10.5)
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике провели высоту из одной вершины, биссектрису из другой и медиану из третьей, отметили точки их попарного пересечения, а затем всё, кроме этих отмеченных точек, стерли (три отмеченные точки различны, кроме того, известно, какая является чьим пересечением). Восстановите треугольник.
Страница: 1
2 >> [Всего задач: 8]