ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 819]      



Задача 64866

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой.

Прислать комментарий     Решение

Задача 64868

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9,10

В остроугольном треугольнике ABC проведены медиана AM, биссектриса AL и высота AH (H лежит между L и B). При этом  ML = LH = HB.
Найдите отношение сторон треугольника ABC.

Прислать комментарий     Решение

Задача 64869

Темы:   [ ГМТ - прямая или отрезок ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9,10

Дана окружность с центром O и не лежащая на ней точка P. Пусть X – произвольная точка окружности, Y – точка пересечения биссектрисы угла POX и серединного перпендикуляра к отрезку PX. Найдите геометрическое место точек Y.

Прислать комментарий     Решение

Задача 64875

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.

Прислать комментарий     Решение

Задача 64904

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Вписанный n-угольник  (n > 3)  разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .