ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  n, n + 1, ..., n + 8.  При каких n он сможет это сделать?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65126  (#11.2)

Темы:   [ Задачи с ограничениями ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 10,11

На новогодний вечер пришли несколько супружеских пар, у каждой из которых было от 1 до 10 детей. Дед Мороз выбирал одного ребёнка, одну маму и одного папу из трёх разных семей и катал их в санях. Оказалось, что у него было ровно 3630 способов выбрать нужную тройку людей. Сколько всего могло быть детей на этом вечере?

Прислать комментарий     Решение

Задача 65113  (#9.3)

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  n, n + 1, ..., n + 8.  При каких n он сможет это сделать?

Прислать комментарий     Решение

Задача 65121  (#10.3)

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть AL – биссектриса треугольника ABC. Серединный перпендикуляр к отрезкуAL пересекает описанную окружность Ω треугольника ABC, в точках P и Q. Докажите, что описанная окружность треугольника PLQ, касается стороны BC.

Прислать комментарий     Решение

Задача 65127  (#11.3)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 10,11

Автор: Якубов А.

Продолжения медиан AA1, BB1 и CC1 треугольника ABC пересекают его описанную окружность в точках A0, B0 и C0 соответственно. Оказалось, что площади треугольников ABC0, AB0C и A0BC равны. Докажите, что треугольник ABC равносторонний.

Прислать комментарий     Решение

Задача 65114  (#9.4)

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

В неравнобедренном треугольнике ABC провели биссектрисы угла ABC и угла, смежного с ним. Они пересекли прямую AC в точках B1 и B2 соответственно. Из точек B1 и B2 провели касательные к окружности ω, вписанной в треугольник ABC, отличные от прямой AC. Они касаются ω в точках K1 и K2 соответственно. Докажите, что точки B, K1 и K2 лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .