ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Предложенный выше алгоритм перемножения многочленов требует порядка n2 действий для перемножения двух многочленов степени n. Придумать более эффективный (для больших n) алгоритм, которому достаточно порядка nlog 4/log 3 действий.

Вниз   Решение


Пусть AL – биссектриса треугольника ABC. Серединный перпендикуляр к отрезкуAL пересекает описанную окружность Ω треугольника ABC, в точках P и Q. Докажите, что описанная окружность треугольника PLQ, касается стороны BC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65126  (#11.2)

Темы:   [ Задачи с ограничениями ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 10,11

На новогодний вечер пришли несколько супружеских пар, у каждой из которых было от 1 до 10 детей. Дед Мороз выбирал одного ребёнка, одну маму и одного папу из трёх разных семей и катал их в санях. Оказалось, что у него было ровно 3630 способов выбрать нужную тройку людей. Сколько всего могло быть детей на этом вечере?

Прислать комментарий     Решение

Задача 65113  (#9.3)

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  n, n + 1, ..., n + 8.  При каких n он сможет это сделать?

Прислать комментарий     Решение

Задача 65121  (#10.3)

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть AL – биссектриса треугольника ABC. Серединный перпендикуляр к отрезкуAL пересекает описанную окружность Ω треугольника ABC, в точках P и Q. Докажите, что описанная окружность треугольника PLQ, касается стороны BC.

Прислать комментарий     Решение

Задача 65127  (#11.3)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 10,11

Автор: Якубов А.

Продолжения медиан AA1, BB1 и CC1 треугольника ABC пересекают его описанную окружность в точках A0, B0 и C0 соответственно. Оказалось, что площади треугольников ABC0, AB0C и A0BC равны. Докажите, что треугольник ABC равносторонний.

Прислать комментарий     Решение

Задача 65114  (#9.4)

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

В неравнобедренном треугольнике ABC провели биссектрисы угла ABC и угла, смежного с ним. Они пересекли прямую AC в точках B1 и B2 соответственно. Из точек B1 и B2 провели касательные к окружности ω, вписанной в треугольник ABC, отличные от прямой AC. Они касаются ω в точках K1 и K2 соответственно. Докажите, что точки B, K1 и K2 лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .