ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение  f(f(...f(x))) = 0  (n букв "f") имеет ровно 2n различных действительных корней?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 86113  (#1)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4
Классы: 9,10,11

На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 108094  (#2)

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11

Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.

Прислать комментарий     Решение

Задача 65578  (#3)

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Фома и Ерёма делят кучку из 25 монет в 1, 2, 3, ..., 25 алтынов. На каждом ходу один из них выбирает монету из кучки, а другой говорит, кому её отдать. Первый раз выбирает Фома, далее тот, у кого сейчас больше алтынов, при равенстве – тот же, кто в прошлый раз. Может ли Фома действовать так, чтобы в итоге обязательно получить больше алтынов, чем Ерёма, или Ерёма всегда сможет Фоме помешать?

Прислать комментарий     Решение

Задача 65582  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Многочлен n-й степени имеет не более n корней ]
[ Индукция (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение  f(f(...f(x))) = 0  (n букв "f") имеет ровно 2n различных действительных корней?

Прислать комментарий     Решение

Задача 65583  (#5)

Темы:   [ Правильные многогранники. Двойственность и взаимосвязи ]
[ Вписанные многогранники ]
[ Описанные многогранники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

Икосаэдр и додекаэдр вписаны в одну и ту же сферу. Докажите, что тогда они описаны вокруг одной и той же сферы.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .