ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В круговом шахматном турнире каждый участник сыграл с каждым из остальных один
раз. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять ![]() ![]() В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.) ![]() ![]() ![]() Найдите все такие пары различных действительных чисел x и y, что x100 – y100 = 299(x – y) и x200 – y200 = 2199(x – y). ![]() ![]() |
Страница: << 1 2 3 4 5 [Всего задач: 24]
По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Найдите все такие пары различных действительных чисел x и y, что x100 – y100 = 299(x – y) и x200 – y200 = 2199(x – y).
Натуральное число N представляется в виде N = a1 – a2 = b1 – b2 = c1 – c2 = d1 – d2, где a1 и a2 – квадраты, b1 и b2 – кубы, c1 и c2 – пятые степени, а d1 и d2 – седьмые степени натуральных чисел. Обязательно ли среди чисел a1, b1, c1 и d1 найдутся два равных?
Страница: << 1 2 3 4 5 [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |