ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что любая натуральная степень многочлена P(x) = x4 + x³ – 3x² + x + 2 имеет хотя бы один отрицательный коэффициент. ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.
Докажите, что любая натуральная степень многочлена P(x) = x4 + x³ – 3x² + x + 2 имеет хотя бы один отрицательный коэффициент.
Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Есть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).
Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что AD = BC. Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |