ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 65934

Темы:   [ Четырехугольники (построения) ]
[ Вписанные и описанные окружности ]
[ Экстремальные свойства (прочее) ]
[ Движение помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину.

Прислать комментарий     Решение

Задача 65935

Темы:   [ Неравенства с площадями ]
[ Центр масс ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 9,10,11

Пусть Р – произвольная точка внутри треугольника АВС. Обозначим через А1, В1 и С1 точки пересечения прямых АР, ВР и СР соответственно со сторонами ВС, СА и АВ. Упорядочим площади треугольников АВ1С1, А1ВС1, А1В1С, обозначив меньшую через S1, среднюю – S2, а большую – S3. Докажите, что     где S – площадь треугольника А1В1С1.

Прислать комментарий     Решение

Задача 65937

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 9,10

В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника.

Прислать комментарий     Решение

Задача 65938

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Окружность Аполлония ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10

В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
Прислать комментарий     Решение


Задача 65941

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Сфера, описанная около тетраэдра ]
[ Теорема косинусов ]
[ Формула Эйлера ]
Сложность: 4
Классы: 10,11

Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .