ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
XIII Олимпиада по геометрии имени И.Ф. Шарыгина (2017 г.)
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи I – центр вписанной окружности треугольника ABC, HB, HC – ортоцентры треугольников ABI и ACI соответственно, K – точка касания вписанной окружности треугольника со стороной BC. Докажите, что точки HB, HC и K лежат на одной прямой. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
Дан остроугольный треугольник ABC. Точки H и O – его ортоцентр и центр описанной окружности соответственно. Серединный перпендикуляр к отрезку BH пересекает стороны AB и BC в точках A1 и C1. Докажите, что OB – биссектриса угла A1OC1.
Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что ∠AIM = 90°. В каком отношении точка I делит отрезок CW?
Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника.
I – центр вписанной окружности треугольника ABC, HB, HC – ортоцентры треугольников ABI и ACI соответственно, K – точка касания вписанной окружности треугольника со стороной BC. Докажите, что точки HB, HC и K лежат на одной прямой.
В треугольнике ABC проведена медиана CF. Точки X и Y симметричны F относительно медиан AD и BE соответственно.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|