ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
года:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даша и Таня живут в одном подъезде. Даша живёт на 6 этаже. Выходя от Даши, Таня пошла не вниз, как ей было нужно, а вверх. Дойдя до последнего этажа, Таня поняла свою ошибку и пошла вниз на свой этаж. Оказалось, что Таня прошла в полтора раза больше, чем если бы она сразу пошла вниз. Сколько этажей в доме? ![]() ![]() В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке. ![]() ![]() ![]() В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин. ![]() ![]() ![]() На вертикальную ось надели несколько колес со спицами. Вид сверху
изображен на левом рисунке.
После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть: а) три; б) два? ![]() ![]() ![]() Пусть $A_1A_2A_3$ – остроугольный треугольник, радиус описанной окружности равен $1$, $O$ – ее центр. Из вершин $A_i$ проведены чевианы через $O$ до пересечения с противолежащими сторонами в точках $B_i$ соответственно $(i=1, 2, 3)$. (а) Из трех отрезков $B_iO$ выберем самый длинный. Какова его наименьшая возможная длина? (б) Из трех отрезков $B_iO$ выберем самый короткий. Какова его наибольшая возможная длина? ![]() ![]() ![]() В тесте к каждому вопросу указаны пять вариантов ответа. Отличник отвечает на все вопросы правильно. Когда двоечнику удаётся списать, он отвечает правильно, а в противном случае – наугад (то есть среди несписанных вопросов он правильно отвечает на ⅕ часть). Всего двоечник правильно ответил на половину вопросов. Какую долю ответов ему удалось списать? ![]() ![]() ![]() На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает. ![]() ![]() |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 393]
Сеня не умеет писать некоторые буквы и всегда в них ошибается. В слове ТЕТРАЭДР он сделал бы пять ошибок, в слове ДОДЕКАЭДР – шесть, а в слове ИКОСАЭДР – семь. А сколько ошибок он сделает в слове ОКТАЭДР?
Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?
На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает.
Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните.
В ребусе ЯЕМЗМЕЯ = 2020 замените каждую букву в левой части равенства цифрой или знаком арифметического действия (одинаковые буквы одинаково, разные – по-разному) так, чтобы получилось верное равенство. Достаточно привести один пример, пояснений не требуется.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 393] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |