ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Петя разрезал фигуру на две равные части, как показано на рисунке. Придумайте, как разрезать эту фигуру на две равные части другим способом.


Вниз   Решение


Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?

ВверхВниз   Решение


В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

ВверхВниз   Решение


Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра.

Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 363]      



Задача 66634

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

Ёжик может встретить в тумане либо Сивого Мерина, либо Сивую Кобылу, либо своего друга Медвежонка. Однажды Ёжику вышли навстречу все трое, но туман был густой, и Ёжик не видел, кто из них кто, а потому попросил представиться.

Тот, кто, с точки зрения Ёжика, был слева, сказал: «Рядом со мной Медвежонок».

Тот, кто стоял справа, заявил: «Это тебе сказала Сивая Кобыла».

Наконец, тот, кто был в центре, сообщил: «Слева от меня Сивый Мерин».

Определите, кто где стоял, если известно, что Сивый Мерин врёт всегда, Сивая Кобыла — иногда, а Медвежонок Ёжику не врёт никогда?

Прислать комментарий     Решение

Задача 66626

Темы:   [ Теория алгоритмов (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7

Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра.

Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ.

Прислать комментарий     Решение

Задача 32010

Темы:   [ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 6,7,8

Сколькими способами число 1979 можно представить в виде разности двух квадратов натуральных чисел?

Прислать комментарий     Решение

Задача 32014

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Сумма нескольких чисел равна 1. Может ли сумма их квадратов быть меньше 0,1?

Прислать комментарий     Решение

Задача 32017

Темы:   [ Делимость чисел. Общие свойства ]
[ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7,8

Из утверждений "число a делится на 2", "число a делится на 4", "число a делится на 12" и "число a делится на 24" три верных, а одно неверное. Какое?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .