ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

На контурной карте России 85 регионов. Вовочка хочет покрасить на карте каждый регион в белый, синий или красный цвет так, чтобы белый и красный цвета не имели общей границы. При этом один или даже два цвета можно не использовать. Докажите, что количество вариантов такой раскраски нечётно.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 363]      



Задача 66630

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

Прислать комментарий     Решение

Задача 66632

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Сумма нескольких положительных чисел равна единице. Докажите, что среди них найдётся число, не меньшее суммы квадратов всех чисел.
Прислать комментарий     Решение


Задача 66635

Темы:   [ Вычисление площадей ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 6,7,8,9

Пит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников?

Прислать комментарий     Решение

Задача 66636

Темы:   [ Делимость чисел. Общие свойства ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 6,7,8,9

На лицевой стороне каждой из $6$ карточек Аня написала черным или красным фломастером по натуральному числу. При этом каждым цветом Аня написала хотя бы два числа.

Затем Боря взял каждую карточку, посмотрел, каким цветом на ней написано число, перемножил все Анины числа того же цвета на других карточках и записал результат на обороте карточки (если другая карточка того же цвета всего одна, то Боря пишет число с этой одной карточки).

Мы видим обороты, на которых написаны числа $18$, $23$, $42$, $42$, $47$, $63$. А что написано на лицевых сторонах этих карточек?

Прислать комментарий     Решение

Задача 66637

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

На контурной карте России 85 регионов. Вовочка хочет покрасить на карте каждый регион в белый, синий или красный цвет так, чтобы белый и красный цвета не имели общей границы. При этом один или даже два цвета можно не использовать. Докажите, что количество вариантов такой раскраски нечётно.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .