Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]
Задача
67349
(#16 [9-11 кл])
|
|
Сложность: 5 Классы: 9,10,11
|
В треугольнике $ABC$ проведены биссектрисы $AA_1$, $BB_1$ и $CC_1$. Отрезки $BB_1$ и $A_1C_1$ пересекаются в точке $D$. Точка $E$ – проекция точки $D$ на сторону $AC$. Точки $P$ и $Q$ лежат на сторонах $AB$ и $BC$ соответственно так, что $EP=PD$, $EQ=QD$. Докажите, что $\angle PDB_1=\angle EDQ$.
Задача
67350
(#17 [9-11 кл])
|
|
Сложность: 4+ Классы: 9,10,11
|
Окружность $\omega$, вписанная в неравнобедренный треугольник $ABC$, касается его сторон $BC, CA$ и $AB$ в точках $D, E$ и $F$ соответственно. Точка $M$ на луче $EF$ такова, что $EM = AB$. Точка $N$ на луче $FE$ такова, что $FN = AC$. Окружности $BFM$ и $CEN$ повторно пересекают $\omega$ в точках $S$ и $T$ соответственно. Докажите, что прямые $BS, CT$ и $AD$ пересекаются в одной точке.
Задача
67351
(#18 [9-11 кл])
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $I_a$ – центр вневписанной окружности, соответствующей вершине $A$; $I'_a$ – точка, симметричная $I_a$ относительно прямой $AA_1$. Аналогично построим точки $I'_b$, $I'_c$.
Докажите, что прямые $A_1I'_a$, $B_1I'_b$, $C_1I'_c$ пересекаются в одной точке.
Задача
67352
(#19 [10-11 кл])
|
|
Сложность: 4 Классы: 8,9,10,11
|
На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.
Задача
67353
(#20 [10-11 кл])
|
|
Сложность: 4 Классы: 9,10,11
|
Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]