ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости дано конечное число точек, причем любая прямая, проходящая через две из данных точек, содержит еще одну данную точку. Докажите, что все данные точки лежат на одной прямой (Сильвестр).

Вниз   Решение


Автор: Жуков Г.

Можно ли n раз рассадить  2n + 1  человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если
 а)  n = 5;  б)  n = 4;  в) n – произвольное натуральное число?

ВверхВниз   Решение


200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Вверх   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 7864]      



Задача 77939

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.
Прислать комментарий     Решение


Задача 77945

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 2+
Классы: 10,11

Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Прислать комментарий     Решение


Задача 77953

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 2+
Классы: 8,9

Решить систему пятнадцати уравнений с пятнадцатью неизвестными:   x1x2 = x2x3 = ... = x14x15 = x15x1 = 1.

Прислать комментарий     Решение

Задача 77957

Темы:   [ Приближения чисел ]
[ Десятичные дроби ]
Сложность: 2+
Классы: 9

Вычислить с шестьюдесятью десятичными знаками     (60 девяток).

Прислать комментарий     Решение

Задача 77964

Темы:   [ Числовые таблицы и их свойства ]
[ Отношение порядка ]
Сложность: 2+
Классы: 6,7,8,9

200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 7864]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .