ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
соревнования:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дано конечное число точек, причем любая прямая, проходящая через две из данных точек, содержит еще одну данную точку. Докажите, что все данные точки лежат на одной прямой (Сильвестр). ![]() ![]() Можно ли n раз рассадить 2n + 1 человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если ![]() ![]() ![]() 200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше? ![]() ![]() |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 7864]
Решить систему пятнадцати уравнений с пятнадцатью неизвестными: x1x2 = x2x3 = ... = x14x15 = x15x1 = 1.
Вычислить с шестьюдесятью десятичными знаками
200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 7864] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |