ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан отрезок OA. Из конца отрезка A выходит 5 отрезков AB1, AB2, AB3, AB4, AB5. Из каждой точки Bi могут выходить ещё пять новых отрезков или ни одного нового отрезка и т.д. Может ли число свободных концов построенных отрезков равняться 1001? Под свободным концом отрезка понимаем точку, принадлежащую только одному отрезку (кроме точки O). Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Дан отрезок OA. Из конца отрезка A выходит 5 отрезков AB1, AB2, AB3, AB4, AB5. Из каждой точки Bi могут выходить ещё пять новых отрезков или ни одного нового отрезка и т.д. Может ли число свободных концов построенных отрезков равняться 1001? Под свободным концом отрезка понимаем точку, принадлежащую только одному отрезку (кроме точки O).
Известно, что модули всех корней уравнений x² + Ax + B = 0, x² + Cx + D = 0 меньше единицы. Доказать, что модули корней уравнения
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
Найти все действительные решения уравнения x² + 2x sin(xy) + 1 = 0.
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|