ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются похожими, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79263  (#1)

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 79264  (#2)

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4-
Классы: 10,11

У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.
Прислать комментарий     Решение


Задача 79258  (#4)

Темы:   [ Процессы и операции ]
[ Разложение в произведение транспозиций и циклов ]
[ Теория алгоритмов (прочее) ]
[ Правило произведения ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются похожими, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?

Прислать комментарий     Решение

Задача 79267  (#5)

Темы:   [ Поворот помогает решить задачу ]
[ Связь величины угла с длиной дуги и хорды ]
[ Ломаные ]
[ Неравенство треугольника (прочее) ]
Сложность: 5-
Классы: 9,10,11

На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .