ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти хотя бы одно целочисленное решение уравнения  a²b² + a² + b² + 1 = 2005.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 7843]      



Задача 79565

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 8

Докажите, что если  0 < a1 < a2 < ... < a8 < a9,  то   < 3.

Прислать комментарий     Решение

Задача 86088

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на движение ]
Сложность: 2+
Классы: 5,6,7

Таракан Валентин объявил, что умеет бегать со скоростью 50 м/мин. Ему не поверили, и правильно: на самом деле Валентин всё перепутал и думал, что в метре 60 см, а в минуте – 100 секунд. С какой скоростью (в "нормальных" м/мин) бегает таракан Валентин?

Прислать комментарий     Решение

Задача 86100

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Найти хотя бы одно целочисленное решение уравнения  a²b² + a² + b² + 1 = 2005.

Прислать комментарий     Решение

Задача 86484

Темы:   [ Системы линейных уравнений ]
[ Методы решения задач с параметром ]
Сложность: 2+
Классы: 7,8,9

При каких значениях m уравнения  mx – 1000 = 1001  и  1001x = m – 1000x  имеют общий корень?

Прислать комментарий     Решение

Задача 86487

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 7,8

Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 7843]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .