ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC и точка P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников PAB, PAC, PBC и ABC, а также окружность, проходящая через проекции точки P на стороны треугольника ABC, пересекаются в одной точке.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 86114

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10

На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

Прислать комментарий     Решение

Задача 86122

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости на 11 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4
Классы: 9,10,11

К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

Прислать комментарий     Решение

Задача 86105

Темы:   [ Теория игр (прочее) ]
[ Теория графов (прочее) ]
[ Необычные конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 8,9,10

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

Прислать комментарий     Решение

Задача 86117

Темы:   [ Индукция в геометрии ]
[ Раскраски ]
[ Теория игр (прочее) ]
[ Простые числа и их свойства ]
[ Деление с остатком ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Аффинная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
  а)  k = 7;   б)  k = 10.

Прислать комментарий     Решение

Задача 86111

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три окружности пересекаются в одной точке ]
Сложность: 5+
Классы: 9,10,11

Дан остроугольный треугольник ABC и точка P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников PAB, PAC, PBC и ABC, а также окружность, проходящая через проекции точки P на стороны треугольника ABC, пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .