Страница: 1
2 >> [Всего задач: 6]
Задача
86112
(#1)
|
|
Сложность: 2 Классы: 9,10
|
Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?
Задача
86113
(#2)
|
|
Сложность: 4 Классы: 9,10,11
|
На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.
Задача
86114
(#3)
|
|
Сложность: 4 Классы: 9,10
|
На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что A3B4 || AB.
Задача
86115
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?
Задача
86116
(#5)
|
|
Сложность: 3 Классы: 10
|
Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005?
Страница: 1
2 >> [Всего задач: 6]