ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1703]      



Задача 97897

Темы:   [ Турниры и турнирные таблицы ]
[ Теория графов (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

Прислать комментарий     Решение

Задача 97900

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Ограниченность, монотонность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Прислать комментарий     Решение

Задача 97902

Темы:   [ Тетраэдр (прочее) ]
[ Векторы (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

Прислать комментарий     Решение

Задача 97915

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Автор: Фольклор

Существует ли такое N и такие  N – 1  бесконечных арифметических прогрессий с разностями  2, 3, 4, ..., N,  что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?

Прислать комментарий     Решение

Задача 97917

Темы:   [ Произведения и факториалы ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9

Через n!! обозначается произведение  n(n – 2)(n – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.
Докажите, что  1985!! + 1986!!  делится на 1987.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .