ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Турниры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них. ![]() |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1703]
Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам куба, всего 27 столбиков.)
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.
В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1.
Имеется n целых чисел (n > 1). Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Докажите, что произведение 99 дробей
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1703] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |