ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 35392  (#М1326)

Темы:   [ Рекуррентные соотношения ]
[ Треугольник Паскаля и бином Ньютона ]
[ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Вялый М.Н.

Последовательность {an} определяется правилами:  a0 = 9,    .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.

Прислать комментарий     Решение

Задача 55754  (#М1327)

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Композиции поворотов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

Автор: Насыров З.

Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.).

Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.

Прислать комментарий     Решение

Задача 98111  (#М1335)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
[ Связность и разложение на связные компоненты ]
Сложность: 4+
Классы: 8,9

n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

Прислать комментарий     Решение

Задача 98138  (#М1346)

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 10,11

Внутри окружности радиуса 1 расположена замкнутая ломаная (самопересекающаяся), содержащая 51 звено, причём известно, что длина каждого звена равна    .   Для каждого угла этой ломаной рассмотрим треугольник, двумя сторонами которого служат звенья ломаной, образующие этот угол (таких треугольников всего 51). Докажите, что сумма площадей этих треугольников не меньше, чем утроенная площадь правильного треугольника, вписанного в окружность.

Прислать комментарий     Решение

Задача 98141  (#М1347)

Темы:   [ Взвешивания ]
[ Метод спуска ]
[ Отношение порядка ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9

Автор: Анджанс А.

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .