ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел?

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 7843]      



Задача 98177

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 6,7,8

Автор: Гусаров М.

Есть три кучи камней. Разрешается к любой из них добавить столько камней, сколько есть в двух других кучах, или из любой кучи выбросить столько камней, сколько есть в двух других кучах. Например:  (12, 3, 5)  →  (12, 20, 5)  (или  (4, 3, 5)).  Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой?

Прислать комментарий     Решение

Задача 98302

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7,8

Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных:  m = a + b/2  и  n = a – c.  Оказалось, что  m = 40.  Найдите n.

Прислать комментарий     Решение

Задача 98313

Темы:   [ Тождественные преобразования ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 6,7,8

Автор: Фольклор

Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел?

Прислать комментарий     Решение

Задача 98327

Темы:   [ Раскраски ]
[ Куб ]
[ Наглядная геометрия в пространстве ]
Сложность: 2+
Классы: 8,9,10

Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?

Прислать комментарий     Решение

Задача 98334

Темы:   [ Правильный (равносторонний) треугольник ]
[ Осевая и скользящая симметрии (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7,8

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 7843]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .