ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98317  (#1)

Темы:   [ Выход в пространство ]
[ Системы точек ]
[ Раскраски ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10,11

Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?

Прислать комментарий     Решение

Задача 98318  (#2)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Существуют ли три таких различных простых числа p, q, r, что  p² + d  делится на qr,  q² + d  делится на rp,  r² + d  делится на pq, если
  а)  d = 10,
  б)  d =11?

Прислать комментарий     Решение

Задача 98319  (#3)

Темы:   [ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите неравенство  

Прислать комментарий     Решение

Задача 98320  (#4)

Темы:   [ Разные задачи на разрезания ]
[ Подсчет двумя способами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 8,9

а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.

б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.

Прислать комментарий     Решение

Задача 98321  (#5)

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Существует ли такое шестизначное число A, что среди чисел  A, 2A, ..., 500000A  нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .