ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом. ![]() ![]() На диагонали AC выпуклого четырёхугольника ABCD выбрана
точка K, для которой KD = DC, ∠BAC = ½ KDC, ∠DAC = ½ ∠KBC. ![]() ![]() ![]() Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей? ![]() ![]() ![]() Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают. ![]() ![]() ![]() Внутри треугольника ABC взята точка P так, что ∠ABP = ∠ACP, а ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC. ![]() ![]() ![]() Если Конек-Горбунок не будет семь суток есть, или спать, то лишится волшебной силы. Допустим, он в течение недели не ел и не спал. Что он должен сделать в первую очередь к концу седьмых суток — поесть или поспать, чтобы не потерять силу? ![]() ![]() ![]() На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть? ![]() ![]() |
Страница: 1 [Всего задач: 5]
В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?
Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?
а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть? Изменится ли ответ, если везде в условии заменить ⅔ на б) ¾; в) 7/10?
На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть?
Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной?
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |