Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 363]
|
|
Сложность: 3+ Классы: 8,9,10
|
Доказать неравенство
.
|
|
Сложность: 3+ Классы: 7,8,9
|
По окончании конкурса бальных танцев, в котором участвовали 7 мальчиков и 8 девочек, каждый (каждая) назвал (назвала) количество своих партнерш (партнеров): 3, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6. Не ошибся ли кто-нибудь из них?
|
|
Сложность: 3+ Классы: 7,8,9
|
Каков наибольший возможный общий делитель чисел 9m + 7n и 3m + 2n, если числа m и n не имеют общих делителей, кроме единицы?
|
|
Сложность: 3+ Классы: 6,7,8,9
|
Можно ли на плоскости нарисовать 12 окружностей так, чтобы каждая касалась ровно пяти других?
|
|
Сложность: 3+ Классы: 7,8,9
|
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–".
Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 363]