ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78135  (#1)

Темы:   [ Треугольники (прочее) ]
[ Векторы (прочее) ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 9,10

Внутри треугольника ABC взята точка O. На лучах OA, OB и OC построены векторы единичной длины.
Доказать, что сумма этих векторов имеет длину, меньшую единицы.

Прислать комментарий     Решение

Задача 78136  (#2)

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 9,10

Доказать, что если уравнения с целыми коэффициентами  x² + p1x + q1x² + p2x + q2  имеют общий нецелый корень, то  p1 = p2  и  q1 = q2.

Прислать комментарий     Решение

Задача 78137  (#3)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 9,10

На круглой поляне радиуса R растут три круглые сосны одинакового диаметра. Центры их стволов находятся на расстоянии $ {\frac{R}{2}}$ от центра поляны в вершинах равностороннего треугольника. Два человека, выйдя одновременно из диаметрально противоположных точек поляны, обходят поляну по краю с одинаковой скоростью и в одном направлении и всё время не видят друг друга. Увидят ли друг друга три человека, если они так же будут обходить поляну, выйдя из точек, находящихся в вершинах вписанного в поляну правильного треугольника?
Прислать комментарий     Решение


Задача 78138  (#4)

Темы:   [ Цепные (непрерывные) дроби ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10

Решить в натуральных числах уравнение

Прислать комментарий     Решение

Задача 78139  (#5)

Темы:   [ Неравенства с площадями ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 9,10,11

Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника — S. Доказать, что S$ \le$17, 5.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .